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Abstract. We present Chora, a P2P web search engine which comple-
ments, not replaces, traditional web search by using peers’ web viewing
history to recommend useful web sites to queriers. Chora is designed
around a two-step paradigm. First, Chora determines which peers to
query and then it executes a query across these peers. Each peer uses
a desktop search engine to query their local web history and retrieve
results ordered by relevance. To determine which peers to query, a small
sketch of the information available from each peer is stored in a DHT.
Peers with sketches indicating that they may have relevant information
are queried. The query is dispersed through an ad hoc network connect-
ing only those machines in the query and is optimized for getting good
results as quickly as possible.

1 Introduction

While P2P Web search is not a new technique, most of the previous work in
this area focuses on creating a P2P network which searches the entire Web [1–
4]. Previous P2P Web search efforts have grown out of two observations: (1)
even the largest centralized search engines probably cannot index the entire web
and (2) Distributed Hash Tables (DHTs) [5, 6] provide an efficient way to index
large amounts of data in a distributed manner. However, there are problems
with these observations and the systems built upon them. One simple proof
that there is something wrong is that these systems, some of which have been
deployed commercially, have not been very successful.

We believe that one crucial observation is missing: you cannot replace a web
search engine solely with promises of the future. With all P2P systems you need
a bootstrapping mechanism: a way to grow the system until it reaches a sufficient
number of users to sustain itself. None of the previous systems describe an ef-
fective bootstrapping mechanism. The added benefits that these systems claim,
such as resistance to censorship and ability to search over a larger database, exist
only in the future, and until these systems have many users, they are essentially
an incomplete reproduction of a centrally hosted search engine.

By recognizing the extra observation above, we designed Chora not to re-
place centralized Web search engines, but rather to use P2P search in the areas of
Web search where it can offer the most improvement. The design of Chora was
motivated by a few scenarios where additional peer information could potentially
improve search:



1. You find a new band that you like, say, Arcade Fire. You want to find out
more about this band: who else likes their music and what they enjoy about
it?

2. You need to concatenate two pdf files but do not know how.

In the first case, there is a group of people, experts, who will be able to answer
the query well. If you could find and directly contact these experts for advice,
they would be able to show you the results they found most useful. In the second
case, you are seeking the same item which a large group of people has already
sought and found. If you can identify these pages, you could use their experience
to expedite your own search.

P2P search is a natural way to aggregate the experiences of individual users.
P2P search interacts directly with user nodes, which contain a user’s full brows-
ing experience, along with many other facets of their computing history. On the
other hand, web search engines, for the most part, only have access to result
clicks, and suppositions inferred from those clicks.

Chora, facilitated by using a two-phase query, provides a means of aggre-
gating a user’s rich computing history. In the first phase, sketch query, it queries
a database stored in a Distributed Hash Table (DHT) to obtain a list of peers
which are most likely to have relevant information. This DHT contains a sketch
of what is on each computer, each sketch being a collection of the most impor-
tant keywords for each user. From this query Chora builds a target list of peers
to query. During the second phase, peer query, Chora delivers a query to each
of these peers and aggregates the results.

Our two-phase execution works by limiting the number of peers queried by
first identifying who is likely to be able to give relevant information. This ne-
cessity is born out of two limitations: it is infeasible to query every peer as has
been seen in P2P applications such as Gnutella [7–9]. On the other hand, users
are weary about the privacy of their web-browsing history. With a full index, in
a centralized server or on a DHT, this information has to leave the user’s com-
puter wholesale. In Chora the only information that needs to leave the peer’s
computer is a small sketch, which the user can filter.

There are two major contributions of this work: the observation that much
of a single user’s browsing history (along with all their computer interactions)
is readily available to help supplement the web search results of all users; and
a method that generates a sufficient description of the content of each user’s
computer, in order to efficiently direct queries to users likely to have good results.
For the method presented in this paper, we use a user’s browsing history and
behavior as available in desktop search products like Google Desktop [10] to
concisely capture their expertise. The main abstraction used is the concept of
a click graph, which helps organize a user’s web pages based on connectivity
implied by their clicks and summary statistics describing their interaction with
each page.

Previous work has not fully explored the method of first locating peers using
sketches. Many have thought that it would simply be too difficult to find informa-
tion stored in this way. A contribution of this paper is a study on how feasible it



is. An additional contribution is the design and implementation of Chora which
efficiently routes queries, in order to receive good results as quickly as possible.

The paper is organized as follows: Section 2 explains the systems related
details of the implementation. Section 3 explains how Chora generates sketches
and aggregates query results, while Section 4 contains an evaluation of Chora.
Finally, Section 5 briefly surveys relevant previous work and Section 6 concludes.

2 System Architecture

In this section we describe the architecture of Chora. Our implementation uses
the Python programming language, the OpenDHT Distributed Hash table [11]
and Google Desktop.

2.1 Query Setup

Initially, when a user joins Chora, the user’s set of keywords is computed, as
described in Section 3, and subsequently each keyword is registered in OpenDHT
under the SHA1 hash of the keyword. Each registered keyword contains meta-
data such as the URL of the computer, location/bandwidth parameters, and
a set of related keywords on that computer. This is done to optimize queries
involving multiple query terms, where we wish to find computers containing all
of those keywords. Finally, every computer registers under a common fixed key,
so the system can optionally flood queries to all participants – an option clearly
feasible in the first stages of deployment.

2.2 Phase 1 - Sketch Query

When a user issues a query to Chora, the system attempts to locate computers
that are likely to have good results, based on each machine’s list of keywords.
This list of peers is referred to as the target list. Conceptually, a Get is performed
to OpenDHT on each word in the query, and the peers whose sketches contain the
most keywords are computed and prioritized. This can be optimized by using
the meta-data that stores a set of other keywords for that computer, or by a
mechanism embedded in the DHT such as PIER’s in-network joins [12]. Once a
target list has been constructed, the system moves to the peer query phase.

2.3 Phase 2 - Peer Query

At this stage, the query needs to be distributed to all the nodes in the target
list. Since in the OpenDHT model, the nodes are not participants in the DHT
routing, they must build a routing mechanism external to the DHT. In this
model each node has greater control over the routing than it would have if the
routing were embedded in a multicast enabled DHT. In particular, queries can
first be sent to the nodes most likely to have good results.



For a large P2P network, it is likely infeasible for the issuing node to send
the query directly to all of the related peers, so a query dissemination tree is
constructed with the issuing node as the root. Each node in the tree receives
the query from its parent, along with a list of computers which will become
that node’s descendants. The node then selects some of the descendant nodes
from that list to become its children, divides the rest of the list among them,
and forwards the query. Then the node executes the query locally using Google
Desktop, and sends the local query results upstream. For fault tolerance, a list
of ancestors can be maintained, so single node failures will not break the tree.

When constructing the tree it is important to be aware of the location of
the nodes. Clearly, when selecting children it is important that the latency is
as low as possible; a node in North America should not distribute its query to
China, when it can choose other nearby nodes. Furthermore, nearby nodes are
not equal. Some have access to more bandwidth, are more likely to have relevant
information, have longer up-times and are more reliable. This observation has
lead to a super-node architecture (e.g. Gnutella ultrapeers). The super-node
architecture contains two types of nodes: leaf-nodes and super-nodes. The main
tree is composed solely of super-nodes and the leaf-nodes are leaves of a super-
node in the tree. In particular, only super-nodes have children. One advantage
of this model is that slow nodes can be placed near the root of the tree without
negatively affecting the time it takes results from other nodes to return.

Detecting near-by nodes can be done in various ways. In Chora, query
trees are short lived so we do not want to do any costly probing of individual
machines at the time of the query. Thus, we opted for a network coordinate
system to compute the latency [13]. Every node stores its Internet coordinates
in the keyword meta-data. The state in the DHT is soft, so this registration is
continuously updated to reflect changes in the coordinates.

We implemented 3 different methods of constructing the query tree:

1. Random: Here each node selects its children randomly, while respecting
some system-configured fan out.

2. Location based: In this model each node selects the children to be the
closest nodes according to the network coordinates, again respecting some
system-configured fan out.

3. Location based with super-nodes: In the super-node model each node se-
lects two types of children: super-children and leaf-children. Thus if a super-
node is sufficiently close it will be selected as a super-child, despite the fact
that some other nodes may be slightly closer. The primary goal when select-
ing leaf-children is to select nodes with data relevant to the query, in order
for the user to more quickly receive good results. Each node decides for itself
if it is a super-node, and may include metrics such as bandwidth, uptime or
be statically configured. This indicator is stored in the DHT meta-data.

We have simulated these three approaches and results indicate that with the
super-node approach we are successful in getting more results in early, and since
the tree is constructed with nodes near the root that are likely to have good
results, the user will notice considerable improvement.



Fig. 1. Query Execution with super-nodes

3 Search Quality

3.1 Sketches

Chora’s two-step query relies on good sketches in order to locate peers who have
information relevant to the query. Because the DHT can only look up keywords,
we are restricted to describing users by a list of searchable keywords (assuming
a user population large enough to render flooding impractical).

Recall the goal behind these sketches: each user wants to advertise topics
for which they have already done extensive research so that other users can
leverage that research. For example, Chora can leverage users that might have
no long-term interest in a topic like “DVD players,” but who are marked as an
expert on “DVD players” because they recently performed extensive research
on DVD players in preparation for a purchase. We observe that the users who
share similar interests are only good users to query if the query is related to
their shared interests. Therefore, characterizations of peers that are not query
sensitive (i.e. bookmarks) are insufficient for our purpose.

Because these sketches are stored on another system, privacy is a concern.
Mechanisms can be added to allow the user to filter the keywords in sketches
published by his computer or to disallow certain queries from being accepted by
his computer. Another way to ensure privacy is to obfuscate the results from
each peer. For example, each peer could be made to contain a few results that
the user did not browse. In this way the user could deny having actively viewed
any results issuing from his machine.

Clustering To make a sketch, we attempt to cluster related web pages in the
user’s browsing history. The keywords from the best clusters will constitute our
sketch. Clustering has three parts: generating click graphs, merging click graphs,
and extracting keywords.

Generating Click Graphs We can divide web viewing into sessions. Each viewing
session is initiated by the user opening the web-browser or actively entering data



into the web browser (e.g. entering a URL or executing a web search query).
Within each session the user navigates by clicking links. For each session we can
define a click graph G = (V,E), where V is the set of web pages visited during
the session and there is a directed edge between web pages p1 and p2 if the user
clicked a link leading to the web page p2 from the web page p1 (see figure 2). We
assume each page is labeled by its URL. In addition, there are other summary
statistics associated with a page: the amount of time the user spent on the page,
the number of times the user visited the page, etc..

Fig. 2. A Click Graph

Merging Click Graphs We combine click graphs that pertain to sessions on re-
lated subjects. For example, when users are researching a subject, they often
perform multiple queries on that subject. All these queries induce distinct click
graphs, however all these graphs are related and should be combined and treated
as one.

Click graphs generated from chronologically contiguous sessions are more
likely to be on the same topic. Additionally, click graphs that share URLs or
have many common words are likely to be on the same topic. Chora uses these
three criteria: time, word commonalities, and link commonalities, to help identify
and merge click graphs that are on the same topic.

Keyword Extraction We now show how Chora computes a vector v which
contains word-score pairs (w, s(w)) for each word w that appears on a page
in the session using a variant of TF-IDF. We can associate a duration tp with
each vertex p ∈ V which indicates the time the user spent on that page. Let
fp(w) = {# of times w appears on p}/{# of words on p} be the frequency
of word w on page p ∈ V .1 We define the score of word w for session i as
ŝ(i)(w) =

∑
p fp(w)tp/T where T =

∑
p∈V tp is the total time spent in this

cluster. It can easily be verified that
∑

w ŝ(i)(w) = 1.
Finally, in order to get the words that best describe a cluster we normalize

across all clusters. Let I be the set of clusters. s(i)(w) = ŝ(i)(w)− 1
|I|−1

∑
j∈I,j 6=i ŝ(i)(w).

1 In computing fp we also take other factors into account, e.g. capitalization.



Note that not all of the s(i)(w)s will be positive. We then score each cluster based
on a combination of the time the user spent viewing pages in the cluster and the
scores of the words in the cluster. The top k clusters are included in the sketch.
The number of keywords included with each cluster is proportional to the score
of the cluster. k is a parameter that depends on the desired sketch size.

Size of Sketch Currently, Chora limits its DHT entries to at most 1 kilobyte.
When each keyword is stored in the DHT, Chora includes the keyword itself,
the meta-data of the user’s machine and as many other keywords from the same
cluster as will fit. Priority is given to the most important keywords and this
number tends to be around 30 in practice.

By using the estimations from [14] that each participating node in the DHT
can store 1 GB, and estimating that 10% of the the users of Chora participate
in the DHT, each user can store 100, 000 keywords. In our opinion that is larger
than is needed for Chora.

Keyword Shortfalls One issue with keywords is that there are situations where
it is not desirable to search over individual keywords, for example when searching
for a quote. The query “It was the best of times, it was the worst of times” would
almost certainly fail if we use the keyword mechanism described above.

This problem can be mitigated by asking the user to separate their query into
a topic (“Charles Dickens”) and a subquery (the quote mentioned above). Then
Chora would use “Dickens” as a keyword (to identify a target list of machines),
but locally search each machine with the subquery. Some users might not be
able to connect a quote like this with the context (“Dickens”), but we note
that centralized search engines already perform exceedingly well on this type of
search.

Another issue is that the DHT can only support exact matches amongst
keywords. If one machine is an expert on “UC Berkeley”, but a user searches
for “University of California, Berkeley” the first machine may not be included
in the target list.

Two ways to alleviate this problem include searching over URLs and auto-
matically generating keywords synonyms. Sometimes a URL describes a topic
better than any word. In the aforementioned example, there are many ways
to describe UC Berkeley as exact keywords, but it has only one homepage:
www.berkeley.edu. Furthermore, additional keywords can be generated on the
fly, for example, by looking at the words the appear in the snippets – the 2 or 3
line query-sensitive summaries of each result – of a centralized web search.

3.2 Ranking and Aggregation

In each of the two phases, sketch query and peer query, the results must be
ranked. The order of the sketch query rank is used to decide which machines to
query if too many positive results come back. It is also used in the super-node
model to decide where peers should be in the query tree.



Sketch query ranking Chora ranks the machines based on three criteria:

1. The number of query words that the keyword list contains.
2. Where the query words appear in the keyword list (keywords at the front of

the keyword list are assumed to be more important).
3. How closely related the keywords are in the peer. (For example, if all the

keywords are found in the same DHT entry, they must all be keywords for
the same cluster or topic).

Peer query ranking Locally, each computer uses a desktop search application
to locate the relevant web sites from their browser history. Unfortunately, desk-
top search systems still have poor relevancy ranking algorithms. We attempt to
improve the ranking by considering the time the user spent on the page (if they
spent very little time, the page is likely bad) and the number of times the user
visits the page. When aggregating these results, Chora takes two things into
account: the number of peers that recommend a particular site and the rank that
each recommending peer gives the site (relative to their other recommendations).

The results are updated on the fly, so when Chora receives more complete
responses that reorder or add additional results, these updates are immediately
conveyed to the user. Ideally these results would be used to rerank typical web
search engine results. In our current implementation we place the Chora results
beside the web search engine results.

4 Evaluation

Keyword Coverage Consider k users, each with a set Di documents. Suppose
we have a query q. Clearly if we issued q against a full-text index which indexed
every word for each document d ∈ D1∪D2∪. . .∪Dk then we would be absolutely
sure that the results Rf (q) (f for full) cover every possible document. In our
setting, the DHT acts as a partial-text-index. If Rp(q) (p for partial) is the
results for querying q against our partial text index, then we are interested
in maximizing the coverage ratio, C(q) = |Rp(q)|/|Rf (q)|. Coverage ratio is a
relaxed definition of recall: it says that the set of relevant documents is Rf (q).
In this relaxed setting, precision is trivially 1.

One way of growing Rp(q) is to just store more keywords for each document.
In the limit, we approach a full-text index. However, we tradeoff increasing
keywords with the increased storage and communication overhead.

One observation is that as long as we use a partial-text index, one will always
be able to construct a query q that makes C(q) small 2. However, in reality, it is
only important that C(q) be large for reasonable queries. For a given topic, like
“Peer to Peer Networks,” we would expect a reasonable query to be something
like “Gnutella Ultrapeers,” whereas there are a huge number of unreasonable

2 Note that this analysis does not apply if we assume that users will change their
querying behavior to first specify a topic (e.g. “Charles Dickens”) that is used to get
a list of machines, and then specify a query.



queries. Our ultimate goal is to cover a high percentage of the reasonable queries
for all topics with a small number of keywords for each cluster in the sketch.

To test our system, we hand-generated 10 topics. You can see one such topic
in Table 1. The table contains a set of training and test queries for the popular
topic, “Harry Potter.” Each topic has 15 training queries that describe the topic,
and at least 5 test queries.

When users index the Google results for training queries like “Harry Potter”
and “Professor Snape,” we expect that one or more of their partial text indices
would be able to answer test queries like “Ron Weasley.”

Given this, we now create a set of fictional users. Each user u chooses a topic
from their topic distribution Tu, and then from within that topic they choose
k queries from the training set. They then take m of the results for each query
from Google as their own pages. At this point, each user has km webpages.

We then build a full-text-index over all the documents, as well as the Chora

keyword-list sketches. For each topic set, we run the test queries against each
index and compute the coverage for each query.

The coverage percentages in Table 1 indicate that for the training queries,
the coverage is perfect, which is not surprising. The test query coverages are
indicative of a trend across all the topics: we found that queries either had full
coverage (Rp = Rf ), or no coverage at all (Rp = 0). The keyword generation
mechanism, while good in some instances, nevertheless fails for many queries we
consider to be reasonable extensions of the training sets 3.

Harry Potter

Training Queries Percent Coverage

Harry Potter 100 %
Harry Potter and the Sorcerer’s Stone 100 %

Professor Snape 100 %
Professor McGonagall 100 %

Albus Dumbledore 100 %
. . .

Test Queries Percent Coverage

Hogwarts School of Magic 100 %
Phoenix hair wand 100 %

Ron Weasley 0 %
Daniel Radcliffe 0 %

Table 1. Training and Test Queries for the topic Harry Potter, along with their cov-
erage

To understand the coverage across topics, Figure 3 was generated by taking
the average coverage over each topic and then placing each average in the indi-
cated bins. While it’s encouraging that on all topics most test queries are hit,
there clearly remains room for improvement.

3 Again note that if the query here were topic = “Harry Potter”, subquery = “Ron
Weasley” we would do much better



Because we ran this experiment on hand-picked data and did not actually
browse the web pages, it does not make sense to talk about a relevant set of
documents that is a subset of Rf (q). We first hope to improve the coverage ratio
and then run our algorithms on real user data where users can describe a relevant
set of documents for the query, and hence we can generate true precision and
recall numbers.

Fig. 3. Average Topic Coverage for Test Queries (each user has at most 1000 keywords
per topic)

5 Related Work

While several P2P Web search engines have been created to search the entire
web, [1–3] and to a lesser extent [4], Chora is more closely related to [2, 15].

Similar to Chora, [2] proposes a two-phase paradigm. However, these two
phases are significantly different to Chora’s. The first phase looks for peers by
searching for both query terms and the user’s bookmarks in a full inverted index.
It then uses the KL divergence over the distribution of words to prune the list of
candidates. At query time, the query is sent point-to-point to all peers discovered
during step 1. In contrast, Chora exploits the user’s full web viewing history
and habits to generate (and prune) the keywords which summarize the data on
the computer, and distributes the query through an optimized query tree. In
addition, Chora uses the peers’ web viewing history to recommend documents.

Other approaches have been proposed for finding peers with related content
in P2P systems. In [16], the authors of the Minerva system analyze multiple
algorithms that can be used to compare a query to a peer’s local database.
Unlike Chora, the Minerva analysis does not divide the database of documents
into clusters or click graphs, but instead looks at global statistics of terms when
choosing the best peer to query. However, like Chora, Minerva generates lists of
the best peers to query by storing term-to-peer mappings in a DHT [17]. In [18],



the system routes queries to peers using an implicit, distributed index, rather
than an explicit index as in Chora. For each neighbor, a node stores a summary
of the content available at that neighbor and all nodes within a small number of
hops of that neighbor. A query is routed to the neighbor with the most related
summary.

Coopeer is similar to Chora in the sense that it does not necessarily attempt
to replicate and improve the centralized web search, but, initially, at least, to
complement it. It can be seen as a web-search generalization of Gnutella. While
it uses local flooding for queries, it attempts to learn a good network on which
to do this flooding. It is also similar to Chora in two significant ways. 1) Lim-
ited information, besides query results, are removed from a users’ computer.
2) It attempts to use information from the users’ web favorites to answer the
query. However, Chora differs from Coopeer significantly in that Chora uses a
two-step query while Coopeer floods the network. Also, while Coopeer only use
favorites, Chora makes full use of the web browsing history, and attempts to
organize it according to topics.

As previously mentioned, Chora uses some techniques developed in the
Gnutella setting, such as the concept of ultrapeers [19, 20] when building the
query tree (see Section 2 for details). Another similarity is that Chora’s two-
phase query processing can be seen as a dynamic version of semantic over-
lays [21], which limit the flood plain of queries in Gnutella. Each semantic overlay
clusters users around a particular topic and when a file is looked for, only the
relevant semantic overlays are flooded.

6 Conclusions

We have presented Chora, a P2P Web Search engine that complements, not
replaces, traditional web search engines. The execution of a query in Chora

involves a two-step paradigm, where first a set of peers is selected to query
based on summary sketches, and then the query is executed on these peers in
an ad-hoc query dissemination tree. The sketches are created using a sketch
generation algorithm which employs the novel use of a click graph.

Chora could be further improved by integrating techniques from the IR
community into the sketch generation algorithm. Also, it could be augmented
by using learning techniques. For example, Chora could be customized to each
peer by weighting the advice of peers that it has, in the past, found helpful.
Another example is that keywords which are commonly searched for could be
pinned into the list of keywords for a user and unused keywords could be replaced
by other relevant words. We hope to explore these areas in future work.
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