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Abstract

We show that for k ≥ 3 even the Ω(n) level of the Lasserre hierarchy cannot disprove a
random k-CSP instance over any predicate type implied by k-XOR constraints, for example
k-SAT or k-XOR. (One constant is said to imply another if the latter is true whenever the
former is. For example k-XOR constraints imply k-CNF constraints.) As a result the Ω(n) level
Lasserre relaxation fails to approximate such CSPs better than the trivial, random algorithm.
As corollaries, we obtain Ω(n) level integrality gaps for the Lasserre hierarchy of 7

6 − ε for Ver-
texCover, 2− ε for k-UniformHypergraphVertexCover, and any constant for
k-UniformHypergraphIndependentSet. This is the first construction of a Lasserre inte-
grality gap.

Our construction is notable for its simplicity. It simplifies, strengthens, and helps to explain
several previous results.

1 Introduction

The Lasserre hierarchy [Las01] is a sequence of semidefinite relaxations for certain 0-1 polynomial
programs, each one more constrained than the last. The kth level of the Lasserre hierarchy requires
that any set of k original vectors be self-consistent in a very strong way. If an integer program
has n variables, the nth level of the Lasserre hierarchy is sufficient to obtain a tight relaxation
where the only feasible solutions are convex combinations of integral solutions. This is because the
nth level requires that the entire set of n vectors are consistent. If one starts from a k-CSP with
poly(n) constraints, then it is possible to optimize over the set of solutions defined by the kth level
of Lasserre in time O(nO(k)), which is sub-exponential for k = o(n/ log n).

The Lasserre hierarchy is similar to the Lovasz-Schrijver hierarchies [LS91], denoted LS and LS+ for
the linear and semidefinite versions respectively, and the Sherali-Adams [SA90] hierarchy, denoted
SA; however, the Lasserre hierarchy is stronger [Lau03]. The region of feasible solutions in `th
level of the Lasserre hierarchy is always contained in the region of feasible solutions in `th level of
LS, LS+, and SA1. A more complete comparison can be found in [Lau03]. While there have been
a growing number of integrality gap lower bounds for the LS[ABL02, ABLT06, Tou06, STT], the
LS+[BOGH+03, AAT05, STT07, GMPT06], and the SA[dlVKM07, CMM07] hierarchies, similar
bounds for the Lasserre hierarchy have remained elusive.

∗This work first appeared as [Sch08]. This version further simplifies some of the proofs including that of the main
lemma, and uses slightly different notation.

†grant@cs.berkeley.edu, Computer Science Division, UC Berkeley. This material is based upon work supported
under a National Science Foundation Graduate Research Fellowship. Work for this paper was done while author was
visiting Princeton University and Microsoft Research-Silicon Valley

1In our definition, for ease of presentation, the `th level of Lasserre for a k-CSP is only meaningful if ` ≥ k, but
this can be modified.
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The study of these hierarchies is motivated by the success of semidefinite programs in approximation
algorithms. In many interesting cases, for small constant `, the `th level of the Lasserre hierarchy
provides the best known polynomial-time computable approximation. For example, the first level
of the Lasserre hierarchy for the IndependentSet problem implies the Lovasz θ-function and
for the MaxCut problem gives the Goemans-Williamson relaxation. The ARV relaxation of the
SparsestCut problem is no stronger than the relaxation given in the third level of Lasserre.

In addition, recent work by Eden Chlamtac [Chl07] has shown improved approximation algorithms
for coloring and independent set in 3-uniform hypergraphs. In [Chl07] the Lasserre hierarchy was
used to find and/or analyze the constraints which led to improved approximations. This work is
unlike the aforementioned work, where it was only later realized that the approximation results
could be viewed as an application of semidefinite program hierarchies.

Integrality gap results for Lasserre are thus very strong unconditional negative results, as they
apply to a “model of computation” that includes the best known algorithms for several problems.

1.1 Previous Lower-Bounds Work

While this is the only work known to us on Lasserre integrality gaps, results are already known
about the weaker hierarchical models for several problems, including many problems we study here.

Buresh-Oppenheim, Galesy, Hoory, Magen and Pitassi [BOGH+03], and Alekhnovich, Arora, Tourlakis
[AAT05] prove Ω(n) LS+ round lower bounds for proving the unsatisfiability of random instances
of 3-SAT (and, in general, k-SAT with k ≥ 3) and Ω(n)2 round lower bounds for achieving ap-
proximation factors better than 7/8− ε for Max 3-SAT, better than (1− ε) ln n for Set Cover, and
better than k− 1− ε for HypergraphVertexCover in k-uniform hypergraphs. They leave open
the question of proving LS+ round lower bounds for approximating the Vertex Cover problem.

Much work has been done on Vertex Cover. Schoenebeck, Tulsiani, and Trevisan[STT] show an
integrality gap of 2 − ε remains after Ω(n) rounds of LS, which is optimal. This build on the
previous work of Arora, Bollobas, Lovasz, and Tourlakis [ABL02, ABLT06, Tou06] who prove that
even after Ω(log n) rounds the integrality gap of LS is at least 2−ε, and that even after Ω((log n)2)
rounds the integrality gap of LS is at least 1.5− ε.

Somewhat weaker results are known for LS+. The best known results are incomparable and were
show by shown by Georgiou, Magen, Pitassi, and Tourlakis[GMPT06] and Schoenebeck, Tulsiani,
and Trevisan [STT07]. The former result [GMPT06] builds on the previous ideas of Goemans
and Kleinberg [KG98] and Charikar [Cha02], and shows that an integrality gap of 2 − ε survives

Ω(
√

log n
log log n) rounds of LS+. The later result shows an integrality gap of 7

6−ε survives Ω(n) rounds.
This result builds on past research which we review here as it is relevant for understanding the
results of this paper.

The result of Feige and Ofek [FO06] immediately implies a 17/16− ε integrality gap for one round
of LS+, and the way in which they prove their result implies also the stronger 7/6− ε bound. The
standard reduction from Max 3-SAT to VertexCover shows that if one is able to approximate
VertexCover within a factor better than 17/16 then one can approximate Max 3-SAT within
a factor better than 7/8. This fact, and the 7/8 − ε integrality gap for Max 3-SAT of [AAT05],
however do not suffice to derive an LS+ integrality gap result for VertexCover. The reason is
that reducing an instance of Max 3SAT to a graph, and then applying a VertexCover relaxation
to the graph, defines a semidefinite program that is possibly tighter than the one obtained by

2In all integrality gap containing an ε, the constant in the Ω depends on ε.
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a direct relaxation of the Max 3-SAT problem. Feige and Ofek [FO06] are able to analyze the
value of the Lovasz θ-function of the graph obtained by taking a random 3-SAT instance and then
reducing it to an instance of IndependentSet (or, equivalently, of VertexCover).

For the Sherali-Adams hierarchy, Charikar, Makarychev, and Makarychev [CMM07] show that, for
some ε, after nε rounds an integrality gap of 2− o(1) remains.

Other results by Charikar [Cha02] and Hatami, Magen, and Markakis [HMM06] prove a 2 − o(1)
integrality gap result for semidefinite programming relaxations of Vertex Cover that include addi-
tional inequalities. Charikar’s relaxation is implied by the relaxation obtained after two rounds of
Lasserre. The semidefinite lower bound of Hatami et al is implied after five rounds of Lasserre.

It was compatible with previous results that after a constant number of rounds of Lasserre the
integrality gap for Vertex Cover could become 1 + o(1).

Our Result

The main result of this paper, is a proof that, for k ≥ 3, the Ω(n)th level of Lasserre cannot prove
that a random k-CSP over any predicate implied by k-XOR is unsatisfiable. From this main results
it quickly follows that the Ω(n)th level of Lasserre:

• cannot prove a random k-XOR formula unsatisfiable.

• cannot prove a random k-SAT formula unsatisfiable.

• contains integrality gaps of 1/2 + ε for Max-k-XOR

• contains integrality gaps of 1− 1
2k + ε for Max k-SAT.

• contains integrality gaps of 7
6 − ε for VertexCover.

• contains integrality gaps of any constant for k-UniformHypergraphVertexCover.

• contains integrality gaps of Ω(1) for k-UniformHypergraphIndependentSet.

In addition to the power of our result, it is also very short and simple. It extends and simplifies
results in [STT07] and [AAT05]. To a large extent it also explains the proofs of [FO06] and [STT07],
and can be seen as being inspired by these results.

Road Map

In Section 2 we will define notation and provide background to our results. In Section 3 we will prove
the main result. In Section 4 we will state and prove the remaining results, which are corollaries
of the main result.

2 Background and Notation

We denote the set of Boolean variables [n] = {1, . . . , n}. Let the range of variables be denoted
x = {xi}i∈[n] = {0, 1}n. For I ⊆ {1, . . . , n}, let xI = {xi}i∈I be the projection of x to the
coordinates of I. We will consider problems where each constraint is local in that it is a k-junta, a
function that depends on at most k variables. Formally:
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Definition 1 For I ⊆ [n] , let FI be the set of all function that only depend on the variable in I.
That is there exists a function f|I : xI → {0, 1} such that f(x) ≡ f|I(xI).

A k-junta f is a function f : x → {0, 1} that depends on at most k variables. Let Fk be the set of
k-juntas, then

Fk =
⋃

|I| ≤ k
I ⊆ [n]

FI

A k-constraint f is a k-junta that appears in the objective function or constraints of an optimization
problem.

Sometimes we use 1f to denote 1f = {x ∈ x : f(x) = 1}.

Definition 2 A k-constraint f implies another k-constraint g if 1f ⊆ 1g. We say that a predicate
is XOR-implied if it is implied by either parity or its negation.

For notational convenience, we will denote by f=xI

(I) (or simply f=xI ) the constraint where f=xI

(I) (x̄) =

1 if x̄I = xI and 0 otherwise. We will denote by ~1 and ~0 the functions that are always and never
true respectively (which are 0-juntas).

We will look at relaxations for two types of integer programs. In the first, we have a set of
constraints, and would like to know if there is any feasible solution. In the second, we have a
set of constraints and would like to maximize some objective function subject to satisfying the
constraints. We formalize the notions here:

Definition 3 A k-constraint satisfiability problem 〈x,C〉 is a set of n Boolean variables in the
domain x = {0, 1}n, and a set of k-constraints C = {Ci}m

i=1.

Definition 4 A k-constraint maximization (or minimization) problem 〈x,C,M〉 is a set of n
Boolean variables in the domain x = {0, 1}n, a set of k-constraints C = {Ci}m

i=1, and an objective
function M : x → R to be maximized (or minimized) where M =

∑`
j=1 λjfj and each λj ∈ R and

each fj is a k-junta.

Fourier Analysis Let I ⊆ [n], then we define the character χI : {0, 1}n → {−1, 1} ⊆ R as

χI(x) =
∏

i∈I

(−1)xi = (−1)
⊕

i∈I xi

Note that χI · χJ = χI4J . The weight of a character is the number of input variables on which its
value depends. We use the following facts:

1. Any function f : {0, 1}n → {0, 1} ⊆ R can be written as

f(x) =
∑

I⊆[n]

f̂(I)χI(x)

where f̂(I) = Ex f(x)χI(x).

2. For any functions f, g : {0, 1}n → {0, 1} ⊆ R we have that f̂ + g(I) = f̂(I) + ĝ(I).
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3. For any functions f, g : {0, 1}n → {0, 1} ⊆ R we have that f̂ · g(I) =
∑

J ⊆ [n]f̂(J)ĝ(I4J)

4. Fix I ⊆ [n] and define f : {0, 1}n → {0, 1} ⊆ R as f(x) =
⊕

i∈I xi Then f̂(∅) = 1
2 , f̂(I) = −1

2

and for J ⊆ [n], J 6∈ {∅, I} then f̂(J) = 0.

Lasserre The Lasserre relaxation defined momentarily is designed to progressively restrict the
feasible region of a constraint maximization (or minimization) problem 〈x,C,M〉 to be closer and
closer to the convex hull of the integer solutions, in such a way that maximizing (or minimizing)
over the feasible regions is still trackable.

Definition 5 The rth round of Lasserre on the k-constraint maximization problem 〈x,C, M〉 is
the semidefinite program with a variable vf for every r-junta f ∈ Fk. Let M =

∑`
i=1 λifi be the

objective function. For reasons of convention, we will denote by v0 the vector for the function ~1

max
∑̀

i=1

λi||vfi ||2

where

||v0||2 = 1 (1)
∀C ∈ C ||vC ||2 = 1 (2)

∀f, g, f ′, g′ ∈ Fk where
f · g ≡ f ′ · g′ 〈vf , vg〉 = 〈vf ′ , vg′〉 (3)

∀f, g, f + g ∈ Fk where
f · g ≡ ~0 vf + vg = vf+g

(4)

The semidefinite program for the rth Lasserre round of a satisfiability problem is the same, but we
only check for the existence of feasibility, we do not try to maximize over any objective function. 3

First note that this is a relaxation, because any {0, 1} integer solution can be transformed into a
{(0), (1)} vector solution.

Now, given a distribution of integer solutions, we know that their exists an equivalent vector
solution because each integer solution has an equivalent vector solution and the program in convex.
We can easily create explicit vectors that satisfy the Lasserre constraints. If (y1, . . . , yn) is from
a probability distribution of integral solutions, that is (y1, . . . , yn) =

∑m
j=1 pj(z

j
1, . . . , z

j
n) where

zj
i ∈ {0, 1}, zj = (zj

1, . . . , z
j
n) are a feasible integral solutions, and

∑m
j=1 pj = 1 then, for each

possible k-junta f ∈ Fk we can produce a vector.

vf (j) =
{ √

pj f(zj) = 1
0 otherwise

(5)

3This definition is slightly different, but equivalent to other definitions of the kth level of the Lasserre hierarchy.
The way that it is stated, it would require double exponential time to solve the rth level. This is easily remedied
by only defining vectors for the and functions of up to r variables and using linear combinations of these vectors to
define the remaining vectors. We present it like this for ease of notation.
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These vectors will satisfy all the constraints of the Lasserre hierarchy at any level. If the reader
is unfamiliar with the definition of the Lasserre hierarchy, then it is a straightforward and useful
exercise to verify this fact.

While the Lasserre equations can be confusing, one general intuition is that the vectors define a
probability distribution on any set of up to r coordinates (Equations 1, 3, and 4); that the probabil-
ity distributions always satisfy the constraints (Equation 2); and that the probability distributions
properly patch together (Equation 3). While global probability distributions map directly to vec-
tors, vectors only map to local distributions (marginal distributions over r variables).

We will momentarily formalize this intuition, but first note that this intuition is not sufficient
In applications, it is usually important that we have vectors and not simply local distributions
that patch together. The fact that we have vectors gives some global orientation. The Goemans-
Williamson MaxCut algorithm generates a global cut with a hyperplane. It is not clear how to
do this with a local distributions alone.

If we define scalar variables pf so that pf = ||vf ||2, and think of (y1, . . . , yn) as a probability
distribution over integer solutions, then pf is the probability that a randomly drawn solution
satisfies the function f . Also we denote by vxI (or pxI ) the vector (or “probability”) corresponding
to f=xI .

Claim 6 Fix I ⊆ [n] such that |I| ≤ r. Then we can get probability distribution over the elements
of xI ∈ xI by defining the “probability” of xI , pxI to be ||vxI ||2, where vxI ≡ vf=xI Actually, these
vectors are all orthogonal, and if you sum over them, you get v0.

Proof: If xI , x
′
I ∈ xI , then vxI and vx′I are orthogonal because f=xI ·f=x′I = ~0 and so by Equation 3

〈vxI , vx′I
〉 = ||~0||2 and by Equation 4 ||v~0||2 = 0

Thus, by Equation 1 then Equation 4: 1 = ||v~1||2 = ||∑xI∈xI
vxI ||2 =

∑
xI∈xI

||vxI ||2. So indeed
we have a probability distribution. ¤

Claim 7 If Equations 1, 3 and 4 are satisfied, then Equation 2 is equivalent to requiring that
||vxI ||2 = 0 for all xI where xI 6∈ 1C|I for some C ∈ C ∩ FI .

Proof: We only used Equations 1, 3 and 4 to show Claim 6. So we know that the vxI are all
orthogonal and by Equation 4 additionally know that if C ∈ FI then C =

∑
xI∈1C|I

f=xI and so by

Equation 4 we have that vC =
∑

xI∈1C|I
vxI . Putting these facts together we see.

1− ||vC ||2 = ||v0||2 − ||vC ||2 = ||
∑

xI∈xI

vxI ||2 − ||
∑

xI∈1C|I

vxI ||2

=
∑

xI∈xI

||vxI ||2 −
∑

xI∈1C|I

||vxI ||2 =
∑

xI 6∈1C|I

||vxI ||2

Thus ||vC ||2 = 1 if and only if
∑

xI 6∈1C|I
||vxI ||2 = 0 ¤

Problems Studied Let P : {0, 1}k → {0, 1} be a Boolean predicates on k-variables. Let Rn,k

be the set of all k tuples of dictators and anti-dictators such no two depend on the same variable.
That is

Rn,k = {(f=b1
({i1}), . . . , f

=bm

({im})) : ∀j ∈ n : ij ∈ [n], bj ∈ {0, 1} and if j 6= k then ij 6= ik}
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In the language k-CSP-P input instances are an integer n and a tuple {R1, . . . , Rm} where Rj ∈
Rn,k. Each function P ◦RJ is called a clause or constraint. (n, {R1, . . . , Rm} ∈ k-CSP-P if there
exists x ∈ x such that P ◦ RJ = 1 for each j ∈ [m], and otherwise is not in the language. That is
if all clauses can be simultaneously be satisfied. In Max-k-CSP-P we want to find the maximum
number of clauses that can be satisfied simultaneously.

To sample a random instance of k-CSP-P with m clauses, we can uniformly and independently
sample m elements of Rn,k, to obtain the instance (n, {R1, . . . , Rm}.
k-XOR is just k-CSP-P where P ≡ ⊕k

i=1xi. Not that we can always rewrite the constant P ◦ Rm

as ⊕j∈Ixi = b where I ⊆ [n], |I| = k, b ∈ {0, 1}.
k-SAT is just k-CSP-P where P ≡ ∨k

i=1xi.

Definition 8 Given a predicates P we define r(P) to be the probability that a random assignment
satisfies P.

For example, in k-XOR, r(k-XOR) = 1/2. For example, in k-SAT, r(k-SAT) = 1− (1
2)k.

In VertexCover we are given a graph G = (V, E). There is a Boolean variable xi for each vertex
i ∈ V . For each edge (i, j) ∈ E we have a constraint which says that both xi and xj cannot be
zero. We are asked to minimize

∑
i∈V xi.

In k-UniformHypergraphIndependentSet we are given a k-uniform hypergraph G = (V,E).
There is a variable xi for each vertex v ∈ V . For each edge (i1, . . . , ik) ∈ E we have a constraint
which says that not all xi1 , . . . , xik can be one. We are asked to maximize

∑
i∈V xi.

k-UniformHypergraphVertexCover is the same as k-UniformHypergraphIndependentSet
except that for each edge (i1, . . . , ik) ∈ E we have a constraint which says that at least one of
xi1 , . . . , xik must be one. We are asked to minimize.

∑
i∈V xi.

Background Results Sufficiently dense random k-CSP formulae are far from being satisfiable
as the next proposition states.

Proposition 9 For any δ > 0, with probability 1−o(1), if ϕ is a random k-CSP-P with ∆n clauses
where ∆ ≥ ln 2

2δ2 + 1, at most a r(P) + δ fraction of the clauses of ϕ can be simultaneously satisfied.

Proposition 9 is well known in the literature, we provide a proof in the appendix for completion.

Definition 10 Width-w resolution on an XOR formula ϕ, successively builds up new clauses by
deriving a new clause

⊕
i∈I∆J xi = b ⊕ b′ whenever the symmetric difference |I∆J | ≤ w and the

clauses
⊕

i∈I xi = b and
⊕

i∈I xi = b′ had either already been derived or belong to ϕ.

Width-w resolution proves a formula ϕ unsatisfiable if it derives the clause 0 = 1. The following
theorem shows that for random 3-XOR formula, even for quite large w, width-w resolution fails to
produce a contradiction.

Theorem 11 For any k ≥ 3, d > 0, γ > 0, and 0 ≤ ε < k/2 − 1, there exists some constant
α > 0, such that if ϕ is a random k-XOR formula with density dnε, then with probability 1− o(1)
ϕ cannot be disproved by width αn

1− ε
k/2−γ−1 resolution nor can any variable be resolved to true

or false. Furthermore, this is true even if the parity sign (whether the predicate is parity or its
negation) of each clause is adversatively chosen.
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Wigderson and Ben-Sasson [BSW01] show that a variant of Theorem 11 holds for k-SAT formula.
The proof of [BSW01] extends to show Theorem 11 using standard techniques. We include a proof
in the appendix for completeness.

3 k-CSPs over XOR-Implied Predicates

We now present the main theorem of the paper.

Theorem 12 Let P be a XOR-implied predicate. Then for every δ, γ, d > 0 and 0 ≤ ε < k/2 − 1
(such that if ε = 0, then d ≥ ln 2

2δ2 + 1) there exists some constant α ≥ 0, such that with probability
1− o(1), if ϕ is a random k-CSP-P with ∆n clauses where ∆ = dnε both the following are true:

1. at most a r(P) + δ fraction of the clauses of ϕ can be simultaneously satisfied.

2. The αn
1− ε

k/2−1−γ level of the Lasserre hierarchy permits a feasible solution.

This theorem implies integrality gaps for XOR-implied k-CSPs because the Lasserre relaxation
cannot refute that all clauses can be simultaneously satisfied, but, in fact, at most r(P)+ δ clauses
can be simultaneously satisfied. Notice that an algorithm that simply guesses a random assignment
would expect to satisfy an r(P) fraction of clauses in expectation. In particular this theorem shows
that with high probability a random k-XOR formula cannot be refuted by Ω(n) rounds of Lasserre
which gives an integrality gap of 1/2 + δ for Ω(n) rounds of Lasserre for Max k-XOR by setting
δ = δ; d ≥ ln 2

2δ2 + 1; ε = 0; and γ = 1
2 . Also, this theorem shows that with high probability a

random 3-CNF formula cannot be refuted by Ω(n) rounds of Lasserre which gives an integrality
gap of 7/8 + δ for Ω(n) rounds of Lasserre for Max k-SAT.

Theorem 12 follows almost immediately from Theorem 11, Proposition 9, and the following Lemma.

Lemma 13 (Main Lemma) If a k-XOR formula ϕ cannot be disproved by width-w resolution,
then the w

2 th round of the Lasserre hierarchy permits a feasible solution.

Proof:[of Theorem 12] Fix δ, γ, d, ε,P as allowed in theorem statement, and let ϕ be a random
k-CSP-P formula with ∆n clauses where ∆ = dnε. By Proposition 9, 1) holds with probability
1− o(1) because for sufficiently large n, ∆ = dnε > ln 2

2δ2 + 1.

We can write ϕ as a k-XOR formula ϕXOR so that ϕXOR ⇒ ϕ. Now the Lasserre relaxation for
ϕXOR is strictly tighter than that for ϕ. Let α′ be as guaranteed in Theorem 11 using k, d, γ, and
ε as inputs so that by Theorem 11 we know that with probability 1− o(1) it is the case that ϕXOR

cannot be disproved by width-α′n1− ε
k/2−γ−1 resolution. Let α = α′

2 . By Lemma 13, ϕXOR cannot
be proven unsatisfiable by α′

2 n
1− ε

k/2−γ−1 = αn
1− ε

k/2−γ−1 rounds of Lasserre. Because the Lasserre
relaxation for ϕXOR is tighter than that for ϕXOR it must be the case that ϕ cannot be proven
unsatisfiable by Lasserre either. ¤

Lemma 13 is the main original technical contribution of this work. In the rest of this section we
first provide some intuition for the proof of Lemma 13 and then provide its proof.

For a first attempt to prove the lemma we can observe that for any particular set I of at most w/2
variables, we can construct vectors for all f as follows: 1) Run bounded width resolution to derive
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a set of constraints that any satisfying assignment must satisfy. 2) Consider the set SATI where

SATI =
{

xI ∈ xI :
xI satisfies all the constraints derived by
the resolution whose support is contained in I

}

Randomize over SATI and construct the vectors as we saw in Equation 5. That is each coordinate
of vfI

will correspond to an element of xI ∈ SATI , and will be
√

1/|SATI | if fI(xI) = 1 and
0 if fI(xI) = 0. These vectors will satisfy the Lasserre Equations 1, 2, and 4; however, these
vectors will fail miserably to satisfy Equation 3 of the Lasserre constraints. We have set up valid
local distributions; however, these distribution do not patch together consistently. The problem is
that when the take the dot product of vxI and vxJ , the values in each coordinate mean something
completely different.

To remedy this misalignment we design a space of equivalence classes of characters of weight at
most w/2 variables which we will use to index the coordinates of each vector. We will say that
χI ∼ χJ if for all assignments that satisfy the derived resolution clauses, χI determines χJ and
vice versa. For example, if ϕ contained the clause x1 ⊕ x2 ⊕ x3 = 0 then χ{1,2} ∼ χ{3} because
whatever x1 ⊕ x2 is, x3 must be the opposite. With some ∼ equivalent characters, fixing one
character automatically fixes the ∼ equivalent character to the opposite value (as above). With
other ∼ equivalent character, fixing one character automatically fixes the ∼ equivalent character to
the same value. Using this fact, we can split each equivalence class of ∼ equivalent character into
two parts, so that the ∼ equivalent clauses in each part always fix each other to the same value,
and ∼ equivalent clauses in opposite parts always fix each other to the opposite value. We can
arbitrarily label one part + and the other −.

The vector corresponding to a function f will have in each coordinate (which corresponds to an an
equivalence class of characters) the sum of the fourier coefficients of f of characters corresponding
the characters in this equivalence class. (Each coefficient will be multiplied by ±1 depending on its
label). The intuition here is that characters of the same equivalence class are completely dependant
on each other, but non-equivalent characters are completely independent. Note that only some of
the coordinates are non-zero.

This relates to the aforementioned construction which satisfies equations 1, 2, and 4 because “lo-
cally” we have just taken a rotation! If we project onto only the relevant characters, then the
mapping of our previously constructed vectors (that failed to satisfy Equation 3) to these new vec-
tors is simply a rotation. This implies that all the Lasserre equations that were previously satisfied
will still be satisfied (because all the irrelevant characters are set to 0 and thus will not affect the
dot product).

For each I ⊆ [n], |I| ≤ w
2 , there is a bijection between the set SATI and the equivalence classes of

χJ where J ⊆ I, because, intuitively, each time resolution derives a new relation, the dimension of
each of these sets is reduced by 1.

In particular the vectors vf
=xI
(I)

for each xI ∈ SATI still form an orthogonal basis. And if you take

the preimage of the vector v0 (I is still fixed) it corresponds to randomizing over the xI ∈ SATI .

One can develop this intuition into a proof by showing that if f ∈ FI and g ∈ FJ then vf and vg

behave well by projecting onto the classes containing the characters involving only variables of I∪J
(these are the only possible non-zero coordinates), and rotating back into the basis of |SATI∪J |. A
previous proof follows this intuition (see [Sch08]. Here we present an easier proof of Lemma 13.

Proof:[Lemma 13]

Construction of Vectors

9



We first define a set E which later will be used to index the coordinates of the vectors.

Let ϕ be a k-XOR formula that has no width-w resolution. Let C be the collection of clauses
generated by width-w resolution running on ϕ. Let Lw be all the characters of weight at most
w. Let F ⊆ Lw be the collection of linear functions cooresponding to the clauses of C. That is if⊕

i∈I xi = bi ∈ C then χI ∈ F .

Now consider the set E = Lw
2 /F . That is we partition Lw

2 into equivalence classes where χI ∼F
χJ ⇔ χI∆J ∈ F
For each equivalence class [χI ] ∈ E , we arbitrarily choose some χI0 ∈ [χI ] (for notational con-
venience, we always choose χ∅ ∈ [χ∅]). We define a function π : L|w/2| ∪ F → {+1,−1} such
that

π(χI) =
{

+1
⊕

i∈I∆I0
xi = 0 ∈ C

−1
⊕

i∈I∆I0
xi = 1 ∈ C

Claim 14 ∼F is an equivalence relations and π is well defined.

We now define the vectors. Each vector will have a coordinate corresponding to the each element of
E . Let eχI = π(χI)e[χI ] (where e[χI ] is the basis vector with a one in the coordinate corresponding
to [χI ]). Let f ∈ F

w
2

vf =
∑

χ∈Lw
2

f̂(χ)e[χ]

so that

vf ([χI ]) =
∑

χ∈[χI ]

π(χ)f̂(χ)

Proof that constructed vectors satisfy Lasserre constraints

We see that Equations 1 is satisfied by the observation that the fourier expansion of ~1 is 1 in the
trivial character and 0 everywhere else. Therefore v0 = (1, 0, . . . , 0) where the 1 is in the coordinate
of [∅]. Therefore ||v0||2 = 0.

We show 2 is satisfied. If C ∈ ϕ then C ∈ C.
First assume that C is

⊕
i∈I xi = 1. Then we must show that ||vf ||2 = 1 where f =

⊕
i∈I xi.

We note that χI ∈ F , π(χI) = −1, and also recall that f(x) = 1
2χ∅ − 1

2χI = 1
2 − 1

2χI . Thus
vf = 1

2e[χ∅] − π(χI)1
2e[χI ] = e[χ∅] because χ∅ ∼F χI .

Similarly, let C =
⊕

i∈I xi = 0. Then we must show that ||vf ||2 = 1 where f = 1−⊕
i∈I xi, because

f is a function that is to be always satisfied. We note that χI ∈ F , π(χI) = 1, and also recall that
f(x) = 1− (1

2χ∅ − 1
2χI) = 1

2 + 1
2χI . Thus vf = 1

2e[χ∅] + π(χI)1
2e[χI ] = e[χ∅] because χ∅ FχI .

Equation 3 is satisfied because we can write 〈vf , vg〉 in terms of only f̂ · g, the fourier coefficients
of f · g. It will follow that if f · g ≡ f ′ · g′ then 〈vf , vg〉 = 〈vf ′ , vg′〉 because the fourier coefficients
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of f · g and f ′ · g′ are the same. For [I] ∈ E , let f̂([χI ]) =
∑

χ∈[χI ] π(χI)f̂(χ) . Then

〈vf , vg〉 =
∑

[χI ]∈E
〈f̂([χI ]), ĝ([χI ])〉

=
∑

χ∈Lw
2

π(χ)f̂(χ)
∑

θ∈[χ]

π(θ)ĝ(θ)

=
∑

χ∈Lw
2

π(χ)f̂(χ)
∑

ψ∈F
π(χψ)ĝ(χψ)

=
∑

ψ∈F
π(ψ)

∑

χ∈Lw
2

f̂(χ)ĝ(χψ)

=
∑

ψ∈F
π(ψ)f̂g(ψ)

The second line follows from expanding the summands. The third line follows from the fact that
[χ] ⊆ χ · F and because g is a w

2 -junta, ĝ(χψ) = 0 if the weight of χψ is greater than w
2 . The

fourth line follows because π(χ)π(χψ) = π(ψ), and the fifth line from the fact that f̂g(ψ) =∑
χ∈Lw

2
f̂(χ)ĝ(χψ) because the full fourier expansions of f and g are captured by the characters of

Lw
2 .

Equation 4, is satisfied because f̂ + g(χ) = f̂(χ) + ĝ(χ) so that vf + vg = vf+g for any functions
f, g, f + g ∈ F

w
2 . ¤

Remark 1 If the width-bounded resolution not only does not refute ϕ, but also does not fix any
variable xi to either true or false, then for every i ∈ [n], ||vxi ||2 = 1

2 . This is because vxi =
1/2e[χ∅] + 1/2e[χ{i}] and if xi is not fixed than χ∅ 6∼ χ{i}.

4 Extensions

We now mention the corollaries of Theorem 12 and its proof.

Corollary 15 For every ε, there exists some constants α ≥ 0, such that the αn level of Lasserre,
an integrality gap of 7

6 − ε for VertexCover persists.

The idea of the proof is to rewrite a 3-XOR formula ϕ as a vertex cover problem on a graph Gϕ

using the standard FGLSS reduction. We will do it in such a way that any vectors that satisfy the
Lasserre relaxation for the 3-XOR instance ϕ will also satisfy the vertex cover Lasserre relaxation
for Gϕ.

To prove this corollary, we use the following lemma which states that for a certain type of trans-
formations most of the Lasserre constraints continue to be satisfied:

Lemma 16 Let 〈x,C,M〉 and 〈x̄, C̄, M̄〉 be two constraint maximization or minimization prob-
lems. For i ∈ [n], ψi : {0, 1}n̄ → {0, 1} be a k-junta on x̄. Define ψ : {0, 1}n̄ → {0, 1}n as
ψ(x̄) = (ψ1(x̄), . . . , ψn(x̄)).

If a collection of vectors {v̄f̄}f̄ satisfy the Lasserre constraints after r rounds for 〈x̄, C̄, M̄〉, then
the collection of vectors {vf}f where vf ≡ v̄f◦ψ satisfy Equations 1, 3, and 4 for br/kc rounds of
Lasserre.

11



Proof: That we only run for br/kc rounds of Lasserre makes all the vectors well-defined. Each
constraint for which we define a vector depends on at most br/kc, and so the corresponding vector
depends on at most r variables.

We use the following standard identities.

• ~1 ◦ ψ = ~1

• f ◦ ψ + g ◦ ψ = (f + g) ◦ ψ

• (f ◦ ψ) · (g ◦ ψ) = (f · g) ◦ ψ

Now Equation 1 is satisfied because ||v~1||2 = ||v̄~1◦ψ||2 = ||v̄~1||2 = 1.

Equation 4 is satisfied because vf + vg = v̄f◦ψ + v̄g◦ψ = v̄(f+g)◦ψ = vf+g

Equation 3 is satisfied because

〈vf , vg〉 = 〈v̄f◦ψ, v̄g◦ψ〉 = 〈v̄(f ·g)◦ψ, v̄0〉 = 〈v̄(f ′·g′)◦ψ, v̄0〉 = 〈v̄f ′◦ψ, v̄g′◦ψ〉 = 〈vf ′ , vg′〉

¤

We now prove Corollary 15

Proof: [Corollary 15] Given a 3XOR instance ϕ with ∆n = m equation, we define the FGLSS
graph Gϕ of ϕ as follows: Gϕ has N = 4m vertices, one for each equation of ϕ and for each
assignment to the three variables that satisfies the equation. We think of each vertex i as being
labeled by a partial assignment to three variables L(i). Two vertices i and j are connected if
and only if L(i) and L(j) are inconsistent. For example, for each equation, the four vertices
corresponding to that equation form a clique. It is easy to see that opt(ϕ) is precisely the size of
the largest independent set of Gϕ because there is a bijection between maximal independent sets
and assignment to the n variables. Note that, in particular, the size of the largest independent set
of Gϕ is at most N/4, where N = 4m is the number of vertices. Thus the smallest vertex cover of
Gϕ is 3N/4 (because the complement of any independent set is a vertex cover).

Let γ = 1/2 and d ≥ ln 2
2δ2 + 1. Then by Theorem 12, there exists an α such, for large enough n,

that we can find a 3XOR formula over n variables that is at most 1/2 + δ satisfiable and cannot
be disproved by αn rounds of Lasserre. Let ϕ be such a formula. Now, we using Theorem 12 we
construct the Lasserre vectors for the 3XOR problem ϕ.

The constraints for the Lasserre hierarchy for VertexCover on this graph Gϕ, are defined over
the vertices of this graph. Formally, let x = {0, 1}V (Gϕ). Let C contain the constraint xi ∨ xj for
each edge (i, j) ∈ E(Gϕ), so that the constraint is satisfied if and only if at least one of the vertices
incident to the edge is in the cover. Let M =

∑
i∈V (Gϕ) xi. Then VertexCover is the 2-constraint

minimization problem 〈x,C,M〉. We can convert it into a Lasserre instance using Definition 5.

Now defining ψi = ¬L(i)4 , we employ Lemma 16 to construct Lasserre vectors. By Lemma 16, these
vectors satisfy Equations 1, 3, and 4 for Ω(n) rounds of the Lasserre VertexCover relaxation.

We still must show that Equation 2 is satisfied. We must show that for each edge (i, j) ∈ E(Gϕ)
that ||vi∧j ||2 + ||vi∧¬j ||2 + ||v¬i∧j ||2 = 1. By Claim 7 we can simply show that ||v¬i∧¬j ||2 = 0. Let
(i, j) ∈ E(Gϕ), then

||v¬i∧¬j ||2 = ||v̄¬i∧¬j ||2 = 〈v̄L(i), v̄L(j)〉 = 0

4That is ψi(x) = 1 if x is consistent with the label L(i) and ψi(x) = 0 if x is inconsistent with the label L(i)
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The first equality follows from Equation 3. The last equality is true because L(i) and L(j) contradict
each other. We know this because i and j are joined by an edge.

Knowing that the Lasserre constraints are satisfied, we show that the objective function
∑

i∈V (Gϕ) ||vi||2 =
3N
4 . Four distinct vertices were created for each of the N clauses. We show that the sum of the
||vi||2 over the four vertices in any clause is always 3. Let C ∈ ϕ be such a clause, let ij : 1 ≤ j ≤ 4
be the four vertices corresponding to C, and let L(ij) be the label corresponding to vertex ij .
Then

∑4
j=1 v̄L(i) = v0 by Claim 6 and the fact that the vector corresponding to an unsatisfying

assignment is ~0. And so

4∑

j=1

||vij ||2 =
4∑

j=1

||v̄¬L(ij)||2 = 3
4∑

j=1

||v̄L(ij)||2 = 3

However, at most (1/2 + ε)n of the clauses of ϕ can be satisfied, and so Gϕ has an independent set
of at most (1

8 + ε)N , and by taking the complement a vertex cover of size at most 7
8 − ε. We get

the integrality gap of (7
8 + ε)N/(3N/4) = 7

6 − ε ¤

Corollary 17 For any constants k and c, there exists constants α, δ ≥ 0, such that if H is a random
Uniform Hypergraph of with n vertices and δn edges, then with probability 1−o(1), an integrality gap
of c remains at the αn level of the k-UniformHypergraphIndependentSet Lasserre hierarchy.

We will use the following well known proposition which is proved in the appendix for completeness:

Proposition 18 For every k ≥ 3, ε > 0, there exists δ > 0, such that if H is a random k-uniform
hypergraph with ∆n edges, where ∆ ≥ δ, then with probability 1− o(1), H has no independent set
of size εn, and, equivalently, H has no vertex cover of size (1− ε)n.

Proof: Let ε = 1
2c and let δ be as in Proposition 18. Let H be a random uniform hypergraph

with δn edges. By Proposition 18 we know that with high probability H has no independent set
of size εn. We now must show that there exists a good solution to the Lasserre relaxation.

We note that the CSP instance is 〈x,C,M〉 where x = {0, 1}V (H), M =
∑

i∈V xi, and for each edge
(v1, . . . , vk) ∈ E(H) we add the constraint ∨k

i=1¬xi to C which we can transform into a Lasserre
relaxation according to Definition 5. Note that any constraint of the form ∨k

i=1¬xi is implied by
either ⊕k

i=1xi = 1 if k is even or ⊕k
i=1xi = 0 if k is odd. Consider then the k-XOR formula ϕH

with ∆n clauses which implies C. We see that in each clause of ϕ the K-XOR constraint is random
except for the constant. Thus, by Theorem 11 we know that ϕ cannot be disproved by width Ω(n)
resolution and no single variable can be fixed. By Theorem 12 ϕ cannot be disproved by Ω(n) levels
of Lasserre. Moreover by Remark 1 we have that ||vi||2 = 1/2 for all i. Thus M =

∑ ||vi||2 = n/2.

So the ratio of the Lasserre optimum to the actual optimum is n/2
εn = c. ¤

Corollary 19 For any constants k and ε > 0, there exists constants α, δ ≥ 0, such that if H is
a random Uniform Hypergraph of with n vertices and δn edges, then with probability 1 − o(1), an
integrality gap of 2−ε remains at the αn level of k-UniformHypergraphVertexCover Lasserre
hierarchy.
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The proof of Corollary 17 is very similar to that of Corollary 19

Proof: Let ε = 1
2c and let δ be as in Proposition 18. Let H be a random uniform hypergraph

with δn edges. By Proposition 18 we know that with high probability H has no vertex cover of
size (1− ε)n. We now must show that there exists a good solution to the Lasserre relaxation.

We note that the CSP instance is 〈x,C,M〉 where x = {0, 1}V (H), M =
∑

i∈V xi, and for each edge
(v1, . . . , vk) ∈ E(H) we add the constraint ∨k

i=1xi to C which we can transform into a Lasserre
relaxation according to Definition 5. Note that any constraint of the form ∨k

i=1xi is implied by
⊕k

i=1xi = 1. Consider then the k-XOR formula ϕH with ∆n clauses which implies C. We see that
in each clause of ϕ the K-XOR constraint is random except for the constant. Thus, by Theorem 11
we know that ϕ cannot be disproved by width Ω(n) resolution and no single variable can be fixed.
By Theorem 12 ϕ cannot be disproved by Ω(n) levels of Lasserre. Moreover by Remark 1 we have
that ||vi||2 = 1/2 for all i. Thus M =

∑ ||vi||2 = n/2.

So the ratio of the actual optimum to the Lasserre optimum is (1−ε)n
n/2 = 1−ε

2 . ¤
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6 Conclusion

We have shown the first known integrality gaps for Lasserre. On the one hand you can see the
main theorem (Theorem 12) as showing gaps for problems that are already known or thought to be
NP-hard. We say that a predicate A is approximation resistant if, given a constraint satisfaction
problem over A predicates, it is NP-hard to approximate the fraction of such predicates which can
be simultaneously satisfied better than the trivial algorithm which randomly guesses an assignment
and returns the fraction of predicates it satisfies. In [?], Zwick shows that the only 3-CPSs which
are approximation resistant are exactly those which are implied by parity or its negation. So, for
k = 3, the main theorem applies exactly to those problems which we already know are NP-hard.

On the other hand, the main theorem applies to results that are known to be in P. Deciding if a
k-XOR formula is satisfiable is equivalent to solving a set of linear equations over F2, which can be
done with Gaussian elimination.

The corollaries show that this technique can be translated into many different settings, especially
when there is a local “gadget” reduction from K-XOR.

References

[AAT05] Michael Alekhnovich, Sanjeev Arora, and Iannis Tourlakis. Towards strong nonap-
proximability results in the Lovasz-Schrijver hierarchy. In Proceedings of the 37th
ACM Symposium on Theory of Computing, pages 294–303, 2005. 1, 2, 3

14
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7 Appendix

Proposition 20 For any δ > 0, with probability 1− o(1), if ϕ is a random k-CSP chosen from the
distribution D with ∆n clauses where ∆ ≥ ln 2

2δ2 + 1, at most a r(D) + δ fraction of the clauses of ϕ
can be simultaneously satisfied.

Proof: Fix an assignment to n variables. Now if we choose, m = ∆n clauses at random, the
probability that more than a r(D) + δ fraction of them are satisfied is at most exp(−2δ2m) =
exp(−2δ2∆n). To get this, we use the Chernoff Bound that says

Pr[X ≥ E[X] + λ] ≤ exp(−2λ2/m)

where X is the number of satisfied clauses, E[X] = r(D)m, λ = δm. Picking a random formula and
random assignment, the probability that more than a r(D) + δ fraction of the clauses are satisfied
is exp(−2δ2∆n). Taking a union bound over all assignments, we get

Pr[any assignment satisfies ≥ (1/2 + δ)m clauses] ≤ exp(−2δ2∆n) · 2n

= exp(n(ln 2− 2δ2∆) = exp(−2δ2n)

because ∆ ≥ ln 2
2δ2 + 1. ¤
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Theorem 21 For k ≥ 3, d > 0, γ > 0, and 0 ≤ ε < k/2−1, if ϕ is a random k-XOR formula with
density dnε, then with probability 1 − o(1) ϕ cannot be disproved by width αn

1− ε
k/2−γ−1 resolution

nor can any variable be resolved to true or false. Furthermore, this is true even if the parity sign
(whether the predicate is parity or its negation) of each clause is adversatively chosen.

We use the following Proposition:

Proposition 22 For any k ≥ 3, d > 0, γ > 0, and 0 ≤ ε < k/2 − 1, there exists β > 0 such that
if ϕ is a random k-XOR formula with density dnε then with probability 1− o(1):

1. Every subformula ϕ′ ⊆ ϕ where |ϕ′| ≤ βn
1− ε

k/2−1 is satisfiable even after fixing one variable.

2. For every subformula ϕ′ ⊆ ϕ where |ϕ′| ∈ [13βn
1− ε

k/2−γ−1 , 2
3βn

1− ε
k/2−γ−1 ], we have that 2V (ϕ′)−

k|ϕ′| ≥ 2γ|ϕ′| where V (ϕ′) is the number of variables in ϕ′.

Proof:[Theorem 21] Let ϕ be a random XOR formula as in the theorem statement and let C be
any clause over the variables of ϕ. We define µ(C) to be the smallest size of a subformula ϕ′ ⊆ ϕ
such that we can start from ϕ′ and imply C using resolution. We note that in any resolution tree,
if C1 and C2 together imply C3, then µ(C1) + µ(C2) ≥ µ(C3).

From the first part of Proposition 22 we know that with high probability µ(0 = 1) ≥ βn
1− ε

k/2−1 .

Now consider a resolution tree that derives 0 = 1, that is, a contradiction. We will show that this
tree must contain a clause C with many variables. By the subadditivity of µ as we move up the res-
olution tree, this tree must contain some clause C such that µ(C) ∈ [13βn

1− ε
k/2−γ−1 , 2

3βn
1− ε

k/2−γ−1 ].

We will now show that with high probability C contains γβ
6 n

1− ε
k/2−γ−1 variables and thus that the

width of the resolution is at least as large. Let ϕ′ be a subformula of size µ(C) which implies C. By
the second part of Proposition 22 we know that 2V (ϕ′) − k|ϕ′| ≥ γ|ϕ′|. Each variable of ϕ′ must
appear either in two of the clauses of ϕ′ or in C itself. If a variable appears in one clause, but not
in C; then no matter what the value of the other variables of that clause, the clause could still be
satisfied by flipping this one variable. Therefore this clause can always be satisfied independently
of the rest of ϕ′ and is not required to imply C. This violates minimality of ϕ′. So

|C|+ k

2
|ϕ′| ≥ V (ϕ′) ⇒ |C| ≥ 1

2
(2V (ϕ′)− k|ϕ′|) ≥ γ|ϕ′| ≥ γβ

3
n

1− ε
k/2−γ−1

so let α = γβ
3 .

To show that you cannot fix one variable to true or false the proof is almost exactly the same.
Instead of showing that µ(0 = 1) is large, we show that for any xi, µ(xi = 0) and µ(xi = 1) are
large. This also follows from the first part of Proposition 22.

We note that we never used the parity of individual clauses in the proof, only the variables contained
in each clause. Therefore the theorem still applies even if the parity of each clause is adversarially
chosen. ¤

Proof:[Proposition 22] First we bound the probability that for a random formula ϕ, there exists
a set of ` clauses containing a total of fewer than c` variables by (O(1) `k−c−1

nk−c−1−ε )`;

We can upper bound the probability that there is a set of ` clauses containing a total of fewer than
c` variables by (

n

c`

)
·
((

c`
k

)

`

)
· l! ·

(
m

`

)
·
(

n

k

)−`
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where
(

n
c`

)
is the choice of the variables,

((c`
k )
`

)
is the choice of the ` clauses constructed out of such

variables, `! · (m
`

)
is a choice of where to put such clauses in our ordered sequence of m clauses, and(

n
k

)−` is the probability that such clauses were generated as prescribed.

Using
(
N
K

)
< (eN/K)K , k! < kk, and m = n1+ε we simplify to obtain the upper bound

(
O

(
`k−c−1

nk−c−1−ε

))`
.

We first show that the first part of the proposition is true if we do not fix any variables. If ϕ′ ⊆ ϕ is
a minimal unsatisfiable subformula of ϕ, then each variable that appears in ϕ′ must occur twice in
ϕ′. Otherwise the clause in which that variable appears is always satisfiable and ϕ′ is not a minimal
unsatisfiable subformula. Thus it is sufficient to show that no set of ` clauses contains fewer than
k
2 ` variables. We will show that if we set c = k/2 in the above formula, the sum over ` from 1 to

βn
1− ε

k
2−1 , can be made o(1) with a sufficiently small β.

βn
1− ε

k
2−1∑

`=1

(
O

(
`

k
2
−1

n
k
2
−1−ε

))`

Let δ be a sufficiently small constant, and let ω(n) be some function that grows in an unbounded
fashion. We break up the above sum into:

δn
1− ε

k
2−1 ω(n)−1∑

`=1

(
O

(
`

k
2
−1

n
k
2
−1−ε

))`

+
βn

1− ε
k
2−1∑

`=δn
1− ε

k
2−1 ω(n)−1+1

(
O

(
`

k
2
−1

n
k
2
−1−ε

))`

We then bound each of these terms:

δn
(1− ε

k
2−1

)

ω(n)−1∑

`=1

(
O

(
`

k
2
−1

n
k
2
−1−ε

))`

≤
∞∑

`=1

(
O(1)(δω(n)−1)k−c−1

)`
= o(1)

for sufficiently small δ and sufficiently large n.

βn
1− ε

k
2−1∑

`=δn
1− ε

k
2−1 ω(n)−1+1

(
O

(
`

k
2
−1

n
k
2
−1−ε

))`

≤
∞∑

`=δn
1− ε

k
2−1 ω(n)−1+1

(
O(1)βk−c−1

)`

≤ βδn
1− ε

k
2−1 ω(n)−1

∞∑

`=1

(
O(1)βk−c−1

)`
= o(1)

for sufficiently small β and sufficiently slowly growing ω(n).

Now we note that small subformulas are satisfiable even if we fix one variable. We can use all the
above machinery, but now require that every set of ` clauses contains k

2 + 1 variables. However,

this change is absorbed into the O constant in
(
O

(
`k−c−1

nk−c−1−ε

))`
because in the above analysis when

changing to
(

n
c`−1

) · ((
c`−1

k )
`

) · l! · (m
`

) · (n
k

)−` we only get an addition factor of c`−1
ne

(
c`

c`−1

)k
the first

factor helps and the second is bounded by 2k which is a constant.
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Now we show the second part of the Proposition.

We saw above that we can bound the probability that there exists a subformula of size ` that

fails to satisfy 2V (ϕ′) − k|ϕ′| ≥ 2γ|ϕ′| by
(

O

(
`

k
2−γ−1

n
k
2−γ−1−ε

))`

. We will fix β later, and now use

a union bound to upper bound the probability that there exists a clause ϕ′ such that |ϕ′| ∈
[13βn

1− ε
k/2−γ−1 , 2

3βn
1− ε

k/2−γ−1 ] and |V (ϕ′)| ≤ (k
2 + γ)|ϕ′|.

1
3
βn

1− ε
k/2−γ−1∑

`= 1
3
βn

1− ε
k/2−γ−1

(
O

(
`

k
2
−γ−1

n
k
2
−γ−1−ε

))`

≤
(

1
3
βn

1− ε
k/2−γ−1

)

O




(
2
3βn

1− ε
k/2−γ−1

) k
2
−γ−1

n
k
2
−γ−1−ε







(
1
3
βn

1− ε
k/2−γ−1

)

≤
(

1
3
βn

1− ε
k/2−γ−1

)(
O(

2
3
β)k/2−γ−1

)(
1
3
βn

1− ε
k/2−γ−1

)

≤
(

1
3
βn

1− ε
k/2−γ−1

)
(
1
2
)

(
1
3
βn

1− ε
k/2−γ−1

)

= o(1)

for a sufficiently small choice of β

¤

Proposition 23 For every k ≥ 3, ε > 0, there exists δ > 0, such that if H is a random k-uniform
hypergraph with ∆n edges, where ∆ ≥ δ, then with probability 1− o(1), H has no independent set
of size εn, and, equivalently, H has no vertex cover of size (1− ε)n.

Proof:

Let δ be such that (1− ε)δ < ε
e . Then the probability that H has an independent set of size εn (or

has a vertex cover of size (1− ε)n) is bounded by the probability that there is a set of size εn such
that no edge contains only vertices from this set:

(
n

εn

)
(1− ε)∆n ≤

(e

ε

)εn
(1− ε)δn ≤

(e

ε

)εn (ε

e

)n
=

(ε

e

)(1−ε)n
= o(1)

¤
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