
Randomness and Computation

NJ Governor’s School

Attribution

• These slides were prepared for the New Jersey
Governor’s School course “The Math Behind
the Machine” taught in the summer of 2011
by Grant Schoenebeck

• Large parts of these slides were copied or
modified from the previous years’ courses
given by Troy Lee in 2010 and Ryan and
Virginia Williams in 2009.

Random Walk

Randomness in Algorithms

• Suppose we:
– Allow our ideal computer access to truly random bits
– Are satisfied with the correct answer 99.9999999% of the

time.

• Do we get any additional computational power?
• Such computers can do things that a deterministic
• computer cannot.

– For example, output a random string.
• Given n, a randomized algorithm can output a n-bit string that is

random with high probability.
• If there was a deterministic program which could do this, it would

(for large enough n) contradict the fact that the string is
incompressible!

A guessing game...

• I am thinking of 10 numbers from 1 to 20...

• Can you guess one of them?

• No matter what my choice, the probability a
random algorithm would not succeed in 10
guesses is 2-10

Primality Testing

• Given integer n, is n prime?

• Sieve of Eratosthenes takes time 𝑛

• Rabin (1980) gave a randomized algorithm taking time
log 𝑛 3
– (called Miller-Rabin test)

– Repeating the test 50 times, the probability a composite is
declared prime is at most 2-100

• In 2002, Agrawal, Kayal, and Saxena gave an efficient
deterministic algorithm for primality testing.
– Kayal and Saxena were still undergraduates at the time.

– The running time of this algorithm is about log 𝑛 6

Can Randomness Help?

• Seems inconceivable that access to a random
string helps you compute.

• Reasonable complexity assumptions imply it
ain’t so.

• Some practical algorithms can only be done
with randomness or are faster with
randomness.

• Provably help in other contexts!

Polynomial Identity Testing

• Polynomial Identity Testing: Given a polynomial is it
identically 0?

• What the problem? We just expand the polynomial
and see if everything cancels?

• A polynomial with n variables and degree d can have
𝑛 + 𝑑
𝑑

 terms. Ideally, running time poly in n and d.

Representation

• Polynomial given to us as a circuit.

• Degree of a polynomial is maximum sum of
exponents in a monomial.

– E.g degree(𝑥2𝑦3𝑧 + 𝑥𝑦2𝑧)= ?

x y x y

+ -

*

Univariate Case

Say we have a univariate degree d polynomial.

This will have
at most d roots!

Evaluate the polynomial at

With more variables...

• f(x, y) = xy

• Now there are an infinite
number of zeros!

Return of the guessing game

• It still looks like we would have to pretty
unlucky for all the points we choose to be
roots of the polynomial.

• Try evaluating the polynomial at random
points!

Classic Example of a Randomized
Algorithm

• Let 𝑝 𝑥1, 𝑥2, … , 𝑥𝑛 be an n-variate polynomial
of degree d.

• Let S = {1, 2,…, 2d} Choose a1, a2, …, an
uniformly from S.

• Evaluate 𝑝 𝑎1, 𝑎2, … , 𝑎𝑛

– If zero say it’s the zero polynomial.

– o. w. we know its not the zero poly.

Example

• f(x, y) = xy
evaluated at points
{0, 1, 2} X {0, 1, 2}

Schwartz-Zippel Lemma
• Lemma:

p(x1, …, xn) st degree(p) = d and not ≡ 0.
For any set S, if a1, a2,…, an are each chosen at
random from S then Pr[p(a1, …, an) = 0] <
𝑑

|𝑆| = 1
2

Perspectives

• The deterministic primality testing algorithm
first formulated the problem as checking a
polynomial identity.

• Giving an efficient deterministic algorithm for
polynomial identity testing is one of the most
important open problems in TCS.

Communication Complexity
Another place were Randomness Helps!

•The dialogues of Alice and Bob...

Alice and Bob make a date

Are you free on Friday?

No, have to work at the Krusty Krab.

How about Saturday?

No, have to work at the Krusty Krab.

How many emails can it take to set a date?

...

Measures of Communication

• We want to quantify the amount of
communication sent back and forth.

• Several ways to do this: number of emails,
total number of characters, volume of
breath...

• Being computer scientists, we will use bits.

Alice’s schedule

Alice’s schedule for the week:

Mon Tue ...

Morn Aftn Eve Morn Aftn Eve ...

Free Busy Busy Busy Free Free ...

We can convert this into a string of bits where

0=Busy, 1=Free

Any 21 bit string is a valid input.

Set Intersection

Alice’s schedule for the week:

Mon Tue ...

Morn Aftn Eve Morn Aftn Eve ...

1 0 0 0 1 1 ...

Bob’s schedule for the week:

Mon Tue ...

Morn Aftn Eve Morn Aftn Eve ...

0 0 1 0 0 1 ...

Set Intersection

Alice’s schedule for the week:

Bob’s schedule for the week:

100 011 100 011 101 010 000

001 001 001 001 001 110 110

Q: Is there a position where both strings have a ‘1’?

Known as the set intersection problem.

Set Intersection

• In general, Alice and Bob will each hold a n bit
binary string.

• Again, the task is to decide if these strings
have a common position with a ‘1’ or not.

• Notice the problem can always be solved with
n+1 bits of communication
– Alice can send her entire input to Bob, he can

produce the correct output.

– This is known as the trivial protocol.

Try It!

?

Communication Matrix

Communication Matrix

000

001

010

011

100

101

110

111

0
0

0

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

1
1

0

1
1

1

0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 1 1 1 0 1 1 1

0 0 0 0 1 1 1 1

0 1 0 1 1 1 1 1

0 0 1 1 1 1 1 1

0 1 1 1 1 1 1 1

Communication Protocol

1

0

0

1

0

1

We also assume the communication is in bits.

100 011... 001 001...

The last bit of the protocol is the
answer!

Communication Protocol

The first bit Alice sends depends only on her input. She knows nothing about
Bob’s schedule...

1

100 011... 001 001...

Communication Protocol

The first bit Alice sends depends only on her input. She knows nothing about
Bob’s schedule...

1

100 011...
001 001...

0

100 111... 001 001...

Communication Protocol

The first bit Alice sends depends only on her input. She knows nothing about
Bob’s schedule...

1

100 011... 001 001...

0

100 111... 001 001...

111 111... 001 001...

1

Communication Protocol

The first bit Alice sends depends only on her input. She knows nothing about
Bob’s schedule...

1

111 111... 001 001...

We can divide Alice’s inputs into two groups:

-those where she first says 1
-those where she first says 0

Communication Protocol

The first bit Bob sends depends only on his input
and the bit sent by Alice.

1

100 011... 001 001...

0

Communication Protocol

The first bit Bob sends depends only on his input
and the bit sent by Alice.

100 011...
001 001...

1

0

100 011... 011 001...

1

1

Communication Protocol

The first bit Bob sends depends only on his input
and the bit sent by Alice.

Conclusion: Bob groups his inputs into two sets, conditioned on Alice’s message.

100 011... 011 001...

1

1

Communication Matrix

Communication Matrix

0

1

Communication Matrix

01 00

10 11

Communication Matrix

010 001

101

111

011
000

100
110

Communication Matrix

010 001

101

111

011
000

100
110

Observations

• Protocol partitions matrix into rectangles.

• With each additional bit of communication, a
rectangle can be split into two. After c bits of
communication, at most 2c rectangles.

• For protocol to be correct, all inputs lying in
the same rectangle must have the same
output value. We say that such a rectangle is
monochromatic.

Diagonal property of rectangles

(x,y)

(x’,y’)

If (x,y) and (x’,y’) lie in the same rectangle...

Diagonal property of rectangles

So must (x,y’) and (x’,y).

(x,y)

(x’,y’)

(x,y’)

(x’,y)

Going back to SI

000

001

010

011

100

101

110

111

0
0

0

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

1
1

0

1
1

1

0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 1 1 1 0 1 1 1

0 0 0 0 1 1 1 1

0 1 0 1 1 1 1 1

0 0 1 1 1 1 1 1

0 1 1 1 1 1 1 1

Going back to SI

000

001

010

011

100

101

110

111

0
0

0

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

1
1

0

1
1

1

0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 1 1 1 0 1 1 1

0 0 0 0 1 1 1 1

0 1 0 1 1 1 1 1

0 0 1 1 1 1 1 1

0 1 1 1 1 1 1 1

Lower bound for SI

• Notice:

– all anti-diagonal entries are 0.

– all entries below anti-diagonal are 1.

• No two anti-diagonal entries can be in the
same monochromatic rectangle!

• This means at least 2n monochromatic
rectangles are needed---n bits of
communication.

Recap

• We just showed a lower bound---any protocol
with less than n bits of communication will
incorrectly answer the set intersection
problem on some input.

• For set intersection, the trivial protocol is
optimal!

Bob goes to the moon

Alice wishes to send
a huge file M to Bob

Is the file corrupted
along the way?

Bob receives some file M’.

Does M=M’?

Bob goes to the moon

M

M’

Bob could just send M’ back.

This is very costly.

Checking Equality

More abstractly, the problem is the following:

Alice has an n bit string M, Bob has an n bit
string M’.

They want to answer 1 if M=M’ and 0 otherwise.

Communication Matrix

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

000

001

010

011

100

101

110

111

0
0

0

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

1
1

0

1
1

1

This is known as the
identity matrix

Communication Matrix

• By the diagonal property of rectangles, no two
pairs (x,x) and (y,y) can be in the same
monochromatic rectangle.

• Again we need 2n many monochromatic
rectangles, and so n bits of communication.

• Is communication complexity always so
boring?

Randomized Model

• Not if we allow randomness!

• Alice and Bob are each given the same book of
random numbers. This is known as shared
randomness.

• For every input, they must output the correct
answer with probability 90%.

Randomized Protocol

M M’

011010 001110

Alice looks at string
R=first n bits of book.

Then she computes

Randomized Protocol

M M’

011010 001110

Alice looks at string
R=first n bits of book.

Bob checks if a=a’, where

If they are equal he outputs 1, otherwise outputs 0.

Correctness of Protocol

• If M=M’ then we will always have a=a’. No
mistakes.

• If 𝑀 ≠ 𝑀′ what is the probability that a=a’?

• M and M’ must differ in some position.
Assume it is the first one.

Correctness of Protocol

M=0

M’=1

Consider the random strings
R in pairs (0r, 1r).

Now notice that

So either

or

For half the random strings, we get different answers.

Randomized Protocol

Protocol Recap:

Alice computes

Bob computes

If M=M’ then a=a’ for any R.

If 𝑀 ≠ 𝑀′ then a=a’ for at most half of the R’s.

Deterministic vs. Random

• Here we have a case where with randomness
we can provably do better than without.

• Deterministically, we must send the entire
input, n bits!

• But if Alice and Bob share a book of
randomness, constant communication
suffices.

On the model

• Sharing randomness is a strong assumption.

• Can eliminate assumption, but
communication increases to log(n) bits.

– First “derandomize” to use log(n) bits of public
randomness

– Then can just share the random coins.

Equality with random primes

• Idea: With her own (private) randomness
Alice chooses a random prime number
between 1 and n2.

• Alice sends Bob p and a=M mod p, known as
“fingerprint” of M.

• Again Bob checks if a=M’ mod p.

Correctness of the protocol

• How many bits does this take?

• If M=M’ then again clearly a=a’.

• Suppose that 𝑀 ≠ 𝑀′ yet a=a’:

– M mod p = M’ mod p;

– M-M’ = 0 mod p

• How many prime divisors can M-M’ have?

– At most log(M)

There are lots of primes!

• Prime number theorem (1896):
Asymptotically, the number of primes less

than N is
𝑁

log 𝑁

– a random n bit number is prime with probability <
1/n

•
𝑁

2 log 𝑁
 primes less than n2

• only log(N) of them are “bad”.

Questions?

• How do you choose a random prime
efficiently?

• Can you find an n-bit prime efficiently
deterministically?

• Can every protocol with shared randomness
be modified to use private randomness in this
way?

