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Random Walk 



Randomness in Algorithms 

• Suppose we: 
– Allow our ideal computer access to truly random bits 
– Are satisfied with the correct answer 99.9999999% of the 

time. 

• Do we get any additional computational power?  
• Such computers can do things that a deterministic  
• computer cannot.   

– For example, output a random string. 
• Given n, a randomized algorithm can output a n-bit string that is 

random with high probability. 
• If there was a deterministic program which could do this, it would 

(for large enough n) contradict the fact that the string is 
incompressible! 

 



A guessing game... 

• I am thinking of 10 numbers from 1 to 20... 

• Can you guess one of them? 

• No matter what my choice, the probability a 
random algorithm would not succeed in 10 
guesses is 2-10 

 



Primality Testing 

• Given integer n, is n prime? 

• Sieve of Eratosthenes takes time 𝑛 

• Rabin (1980) gave a randomized algorithm taking time 
log 𝑛 3  
– (called Miller-Rabin test) 

– Repeating the test 50 times, the probability a composite is 
declared prime is at most 2-100 

• In 2002,  Agrawal, Kayal, and Saxena gave an efficient 
deterministic algorithm for primality testing. 
– Kayal and Saxena were still undergraduates at the time. 

– The running time of this algorithm is about log 𝑛 6 

 
 

 

 



Can Randomness Help? 

• Seems inconceivable that access to a random 
string helps you compute. 

• Reasonable complexity assumptions imply it 
ain’t so. 

• Some practical algorithms can only be done 
with randomness or are faster with 
randomness. 

• Provably help in other contexts! 



Polynomial Identity Testing 

• Polynomial Identity Testing: Given a polynomial is it 
identically 0? 
 
 
 
 
 

• What the problem?  We just expand the polynomial 
and see if everything cancels? 

• A polynomial with n variables and degree d can have 
𝑛 + 𝑑
𝑑

 terms.  Ideally, running time poly in n and d. 

 
 



Representation 

• Polynomial given to us as a circuit. 

• Degree of a polynomial is maximum sum of 
exponents in a monomial. 

– E.g degree(𝑥2𝑦3𝑧 + 𝑥𝑦2𝑧)= ? 

 

x y x y 
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Univariate Case 

Say we have a univariate degree d polynomial. 

This will have  
at most d roots! 

Evaluate the polynomial at  



With more variables... 

• f(x, y) = xy 

• Now there are an infinite 
number of zeros! 

 



Return of the guessing game 

• It still looks like we would have to pretty 
unlucky for all the points we choose to be 
roots of the polynomial. 

• Try evaluating the polynomial at random 
points! 

 

 

 



Classic Example of a Randomized 
Algorithm 

• Let 𝑝 𝑥1, 𝑥2, … , 𝑥𝑛 be an n-variate polynomial 
of degree d. 

• Let S = {1, 2,…, 2d}  Choose a1, a2, …, an 
uniformly from S. 

• Evaluate 𝑝 𝑎1, 𝑎2, … , 𝑎𝑛  

– If zero say it’s the zero polynomial. 

– o. w. we know its not the zero poly. 

 



Example 

• f(x, y) = xy  
evaluated at points  
{0, 1, 2} X {0, 1, 2} 



Schwartz-Zippel Lemma 
• Lemma:  

p(x1, …, xn) st degree(p) = d and not ≡ 0.   
For any set S, if a1, a2,…, an are each chosen at 
random from S then Pr[p(a1, …, an) = 0] < 
𝑑

|𝑆| = 1
2  



Perspectives 

• The deterministic primality testing algorithm 
first formulated the problem as checking a 
polynomial identity. 

• Giving an efficient deterministic algorithm for 
polynomial identity testing is one of the most 
important open problems in TCS. 

 

 

 



Communication Complexity 
Another place were Randomness Helps! 

•The dialogues of Alice and Bob... 



Alice and Bob make a date 

Are you free on Friday? 

No, have to work at the Krusty Krab.  

How about Saturday? 

No, have to work at the Krusty Krab.  

How many emails can it take to set a date? 

... 



Measures of Communication 

• We want to quantify the amount of 
communication sent back and forth. 

• Several ways to do this: number of emails, 
total number of characters, volume of 
breath...  

• Being computer scientists, we will use bits. 

 



Alice’s schedule 

Alice’s schedule for the week: 

Mon Tue ... 

Morn Aftn Eve Morn Aftn Eve ... 

Free Busy Busy Busy Free Free ... 

We can convert this into a string of bits where 

0=Busy, 1=Free 

Any 21 bit string is a valid input. 



Set Intersection 

Alice’s schedule for the week: 

Mon Tue ... 

Morn Aftn Eve Morn Aftn Eve ... 

1 0 0 0 1 1 ... 

Bob’s schedule for the week: 

Mon Tue ... 

Morn Aftn Eve Morn Aftn Eve ... 

0 0 1 0 0 1 ... 



Set Intersection 

Alice’s schedule for the week: 

Bob’s schedule for the week: 

100 011 100 011 101 010 000 

001 001 001 001 001 110 110 

Q: Is there a position where both strings have a ‘1’? 

Known as the set intersection problem. 



Set Intersection 

• In general,  Alice and Bob will each hold a n bit 
binary string. 

• Again, the task is to decide if these strings 
have a common position with a ‘1’ or not.  

• Notice the problem can always be solved with 
n+1 bits of communication 
– Alice can send her entire input to Bob, he can 

produce the correct output. 

– This is known as the trivial protocol. 

 



Try It! 

? 



Communication Matrix 
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Communication Protocol 

1 

0 

0 

1 

0 

1 

We also assume the communication is in bits. 

100 011... 001 001... 

The last bit of the protocol is the 
answer! 



Communication Protocol 

The first bit Alice sends depends only on her input.  She knows nothing about 
Bob’s schedule... 
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Communication Protocol 

The first bit Alice sends depends only on her input.  She knows nothing about 
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Communication Protocol 

The first bit Alice sends depends only on her input.  She knows nothing about 
Bob’s schedule... 

1 

111 111... 001 001... 

We can divide Alice’s inputs into two groups: 

-those where she first says 1 
-those where she first says 0 



Communication Protocol 

The first bit Bob sends depends only on his input  
and the bit sent by Alice. 
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Communication Protocol 

The first bit Bob sends depends only on his input  
and the bit sent by Alice. 
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Communication Protocol 

The first bit Bob sends depends only on his input  
and the bit sent by Alice. 

Conclusion: Bob groups his inputs into two sets, conditioned on Alice’s message. 

100 011... 011 001... 

1 

1 
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Observations 

• Protocol partitions matrix into rectangles. 

• With each additional bit of communication, a 
rectangle can be split into two.  After c bits of 
communication, at most 2c rectangles. 

• For protocol to be correct, all inputs lying in 
the same rectangle must have the same 
output value.  We say that such a rectangle is 
monochromatic. 

 



Diagonal property of rectangles 

(x,y) 

(x’,y’) 

If (x,y) and (x’,y’) lie in the same rectangle... 



Diagonal property of rectangles 

So must (x,y’) and (x’,y). 

(x,y) 

(x’,y’) 

(x,y’) 

(x’,y) 



Going back to SI 
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Lower bound for SI 

• Notice:  

– all anti-diagonal entries are 0. 

– all entries below anti-diagonal are 1. 

• No two anti-diagonal entries can be in the 
same monochromatic rectangle! 

• This means at least 2n monochromatic 
rectangles are needed---n bits of 
communication. 

 



Recap 

• We just showed a lower bound---any protocol 
with less than n bits of communication will 
incorrectly answer the set intersection 
problem on some input. 

• For set intersection, the trivial protocol is 
optimal! 

 



Bob goes to the moon 

Alice wishes to send  
a huge file M to Bob 

Is the file corrupted  
along the way? 

Bob receives some file M’. 

Does M=M’? 



Bob goes to the moon 

M 

M’ 

Bob could just send  M’ back. 

This is very costly. 



Checking Equality 

More abstractly, the problem is the following: 

Alice has an n bit string M, Bob has an n bit  
string M’. 

They want to answer 1 if M=M’ and 0 otherwise. 



Communication Matrix 
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This is known as the 
identity matrix 



Communication Matrix 

• By the diagonal property of rectangles, no two 
pairs (x,x) and (y,y) can be in the same 
monochromatic rectangle. 

• Again we need 2n many monochromatic 
rectangles, and so n bits of communication. 

• Is communication complexity always so 
boring? 

 

 



Randomized Model 

• Not if we allow randomness! 

• Alice and Bob are each given the same book of 
random numbers.  This is known as shared 
randomness. 

• For every input, they must output the correct 
answer with probability 90%. 

 



Randomized Protocol 

M M’ 

011010 001110 

Alice looks at string  
R=first n bits of book. 

Then she computes  



Randomized Protocol 

M M’ 

011010 001110 

Alice looks at string  
R=first n bits of book. 

Bob checks if a=a’, where 

If they are equal he outputs 1, otherwise outputs 0. 



Correctness of Protocol 

• If M=M’ then we will always have a=a’.  No 
mistakes. 

• If  𝑀 ≠ 𝑀′ what is the probability that a=a’?  

• M and M’ must differ in some position.  
Assume it is the first one. 

 



Correctness of Protocol 

M=0 

M’=1 

Consider the random strings 
R in pairs (0r, 1r). 

Now notice that 

So either 

or 

For half the random strings, we get different answers. 



Randomized Protocol 

Protocol Recap:   

Alice computes 

Bob computes 

If M=M’ then a=a’ for any R. 

If 𝑀 ≠ 𝑀′ then a=a’ for at most half of the R’s. 



Deterministic vs. Random 

• Here we have a case where with randomness 
we can provably do better than without. 

• Deterministically, we must send the entire 
input, n bits! 

• But if Alice and Bob share a book of 
randomness, constant communication 
suffices. 

 

 

 



On the model 

• Sharing randomness is a strong assumption. 

• Can eliminate assumption, but 
communication increases to log(n) bits.  

– First “derandomize” to use log(n) bits of public 
randomness 

– Then can just share the random coins. 

 

 

 



Equality with random primes 

• Idea:  With her own (private) randomness 
Alice chooses a random prime number 
between 1 and n2. 

• Alice sends Bob p and a=M mod p, known as 
“fingerprint” of M. 

• Again Bob checks if a=M’ mod p. 

 



Correctness of the protocol 

• How many bits does this take? 

• If M=M’ then again clearly a=a’. 

• Suppose that 𝑀 ≠ 𝑀′ yet a=a’: 

– M mod p = M’ mod p; 

– M-M’ = 0 mod p 

• How many prime divisors can M-M’ have? 

– At most log(M) 

 

 



There are lots of primes! 

• Prime number theorem (1896):  
Asymptotically, the number of primes less 

than N is 
𝑁

log 𝑁
 

– a random n bit number is prime with probability <  
1/n 

•
𝑁

2 log 𝑁
 primes less than n2 

• only log(N) of them are “bad”.  

 



Questions? 

• How do you choose a random prime 
efficiently? 

• Can you find an n-bit prime efficiently 
deterministically? 

• Can every protocol with shared randomness 
be modified to use private randomness in this 
way? 

 


